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Extended version on arXiv. Includes:

1) More general theory and better proof method.
2) More extensive experiments.

Code to reproduce all experiments is at: https://github.com/widedeepnetworks/widedeepnetworks
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Potential of Bayesian neural networks

Data efficiency is a serious problem for instance in deep RL.

Generalization in deep learning is (still) poorly understood.

Can reveal and critique the true model assumptions of deep learning?



Priors on weights are difficult to interpret.
If we do not understand the prior then why do we expect good performance?

Possible e.g that we are doing good inference with a terrible prior.



Increasing width, single hidden layer (Neal 1994)
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Carefully scaled prior
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The Central Limit Theorem (CLT)

1D Convergence in distribution €< Convergence of CDF at all continuity points
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Consider a sequence of i.i.d random variables (u, u,,..,u,). With mean 0 and finite variance ag’.

Define the standardized sum: Sfﬁ iU

D
Then: S,, > N(0,52)



Subtleties of convergence in distribution: a simple example

Consider an i.i.d sequence of Rademacher RVs.

plzi = —1) = ple; =1) =1/2

Define S,, := ﬁ > Ty

Convergence to IN(0, 1) in distribution as n — oo

Consider the set A = {% ca€7Z,beN}

Then Pr(S, € A) =1 for all n whereas A has probability zero under N(0,1).



Question: What does it mean for a stochastic process to converge in distribution?

One answer: All finite dimensional distributions converge in distribution.



Increasing width, multiple hidden layers
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Our contributions

1) Rigorous, general, proof of CLT for networks with more than one hidden layer.

2) Empirical comparison to finite but wide Bayesian neural networks from the literature.
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Multiple hidden layers:
A first intuition .

Single input data point: Neal (1995) showed that the f (1) units will converge to
independent normal variables. But since ¢(') becoming increasingly independent
this suggests f(?) will also converge to a normal distribution.

Multiple input data points: There is now a correlated normal vector at each f(})
unit with elements corresponding to the different input points. The different g(!)
units will still become increasingly independent. This suggests (2 converges
to a correlated normal vector.

Problem with argument: The f(1) units are only independent asymptotically.
Convergence may depend on the rate which this limit is achieved.
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A nonlinearity ¢ : R +— R is said to obey the linear envelope property if there
exist ¢, m > 0 such that the following inequality holds

o(u)| < c+mlu| YueR.

For a given network sequence index x € N, a width function hy : N — N at
depth d specifies the number of hidden units K9 at depth d.
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Careful treatment
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Consider a random deep neural network of the type shown above with a
continuous nonlinearity obeying the linear envelope condition. Let the weights
distributions be appropriately scaled independent normals. Then for all sets of
strictly increasing width functions hy and for any countable input set (z[i])S2,,
the distribution of the output of the network converges in distribution to a
Gaussian process as k£ — oo. The Gaussian process has mean function zero and
the covariance function is given by the recursion already shown.

f(:?)
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Proof sketch

1. Proceed through the network by induction starting closest to data.

2. At each layer, reduce the problem to the convergence of any finite linear
projection of data and units.

3. Prove convergence in distribution of projections and certain moment bounds
at each layer.

The proof of convergence in distribution for step 3) makes heavy use of the
exchangeable central limit theorem of Blum et al 1958, for triangular arrays.



Exchangeability

An infinite sequence of random variables is
exchangeable if any finite permutation leaves its
distribution invariant.

de Finetti’s theorem:

An infinite sequence of random variables
is exchangeable if and only if itis i.i.d
conditional on some random variable.

If we condition on ¢(®) then the different
paths through the second hidden layer to
f2) are independent.



Exchangeable central limit theorem
Blum et al 1958

For each positive integer n let (X, ;¢ =1,2,...) be an infinitely exchangeable

process with mean zero, variance one, and finite absolute third moment. Define X21 K22

X31 X32 X33

1 n
S, = — X
n \/ﬁ?;zl n,i

Then if the following conditions hold:

Xa1 Xa2 Xu3z Xau

Triangular array:
Allows for the definition of the RVs
2. lim, oo B, [ X2, X2,] =1 to change as well as the number.

3. E, || Xn1|?] = o(v/n)

Then S,, converges in distribution to a standard normal.

1. Ep[Xp1Xn2] = o(3)

n



Empirical rate of convergence
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Compare:

1) Exact posterior
inference in
Gaussian process
with the limit kernel
(Fast for this data).

2) Three hidden
layer network with
50 units per
hidden layer with
gold-standard
HMC (Slow for this
data).

Output

Output

Gaussian process

Bayesian deep network




Limitations of kernel methods

A general regression algorithm can be written in the following way:
f* — A(:C*ﬂX?y)

X training inputs, y training outputs, z* current test input and f* the prediction.

Kernel methods (including the GP posterior mean) can be written as
fr=BX,2") "y +c(X,27)

i.e they are an affine transformation of the training outputs.



Deep Gaussian Processes

Can view (some of) these models as taking the limit of
some layers but keeping others narrow.

This prevents the onset of the central limit theorem.

Damianou and Lawrence. 2013



A subset of subsequent work

With apologies to many excellent omissions...



Subsequent work: convolutional neural networks and NTK
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Roman Novak, Lechao Xiao, Yasaman Bahri, Jaehoon Lee, Greg Yang, Jiri Hron, Daniel A. Abolafia, Jeffrey
Pennington, Jascha Sohl-Dickstein.
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Deep Convolutional Networks as shallow Gaussian Processes
Adria Garriga-Alonso, Carl Edward Rasmussen, Laurence Aitchison
ICLR 2019

Neural Tangent Kernel: Convergence and Generalization in Neural Networks
Arthur Jacot, Franck Gabriel, Clement Hongler
NeurlPS 2018



